SLIDE-1-TITLE-HERE

Replace these every slider sentences with your featured post descriptions.Go to Blogger edit html and find these sentences.Now replace these with your own descriptions.This theme is Bloggerized by Lasantha - Premiumbloggertemplates.com[...]

SLIDE-2-TITLE-HERE

Replace these every slider sentences with your featured post descriptions.Go to Blogger edit html and find these sentences.Now replace these with your own descriptions.This theme is Bloggerized by Lasantha - Premiumbloggertemplates.com[...]

SLIDE-3-TITLE-HERE

Replace these every slider sentences with your featured post descriptions.Go to Blogger edit html and find these sentences.Now replace these with your own descriptions.This theme is Bloggerized by Lasantha - Premiumbloggertemplates.com[...]

If you are going [...]

SLIDE-4-TITLE-HERE

Replace these every slider sentences with your featured post descriptions.Go to Blogger edit html and find these sentences.Now replace these with your own descriptions.This theme is Bloggerized by Lasantha - Premiumbloggertemplates.com[...]

SLIDE-5-TITLE-HERE

Replace these every slider sentences with your featured post descriptions.Go to Blogger edit html and find these sentences.Now replace these with your own descriptions.This theme is Bloggerized by Lasantha - Premiumbloggertemplates.com[...]

Senin, 21 Mei 2012

Teorema Pythagoras

Televisi sebagai media informasi, memiliki banyak sekali keunggulan dibandingkan dengan media lainnya, baik media cetak maupun media elektronik. Salah satu keunggulannya adalah televisi mampu memvisualisasikan suatu informasi secara langsung. Untuk memenuhi berbagai kebutuhan yang beragam, televisi diproduksi dalam berbagai macam ukuran. Pada umumnya, ukuran televisi dinyatakan dalam satuan inci (1 inci = 2,54 cm), mulai dari 14 inci, 21 inci, 35 inci, sampai 49 inci. Perlu diingat, ukuran televisi yang dinyatakan dalam satuan inci tersebut merupakan panjang diagonal layar televisi. Misalkan kamu memiliki televisi 21 inci. Jika lebar televisi tersebut adalah 16 inci, berapakah tingginya? Kamu dapat dengan mudah menghitung tinggi televisi tersebut jika kamu memahami konsep teorema Pythagoras. Pada bab ini, kamu akan mempelajari teorema Pythagoras beserta pengertian, penggunaan, dan penerapannya dalam kehidupan sehari-hari. Selain itu, akan diuraikan pula perhitungan garis tinggi dan garis berat pada segitiga sebagai perluasaan dari teorema Pythagoras.
Image:pythagoras_2.jpg

A. Teorema Pythagoras

1. Pengertian Teorema Pythagoras

Siapakah Pythagoras itu? Pythagoras adalah seorang ahli matematika dan filsafat berkebangsaan Yunani yang hidup pada tahun 569 – 475 sebelum Masehi. Sebagai ahli metematika, ia mengungkapkan bahwa kuadrat panjang sisi miring suatu segitiga siku-siku adalah sama dengan jumlah kuadrat panjang sisi - sisi yang lain. Untuk membuktikan hal ini, coba kamu lakukan Kegiatan 5.1.
Kegiatan 5.1
  1. Sediakan kertas karton, pensil, penggaris, lem, dan gunting.
  2. Buatlah empat buah segitiga yang sama dengan panjang sisi alas a = 3 cm, sisi tegak b = 4 cm, dan sisi miring c = 5 cm. Lalu guntinglah segitiga - segitiga itu.
  3. Buatlah sebuah persegi dengan panjang sisi yang sama dengan sisi miring segitiga, yaitu c = 5 cm. Warnailah daerah persegi tersebut, lalu guntinglah.
  4. Tempelkan persegi di karton dan atur posisi keempat segitiga sehingga sisi c segitiga berimpit dengan setiap sisi persegi dan terbentuk sebuah persegi besar dengan sisi (a + b). Lihat gambar berikut.
Image:pythagoras_4.jpg
Jika kamu perhatikan dengan cermat akan diperoleh hubungan c2 = a2 + b2, dimana c adalah panjang sisi miring, a adalah panjang alas, dan b adalah tinggi. Dari hubungan tersebut dapat dikatakan bahwa kuadrat panjang sisi miring segitiga siku-siku sama dengan jumlah kuadrat sisi - sisi lainya. Inilah yang disebut teorema Pythagoras. Cara lain untuk membuktikan teorema Pythagoras adalah dengan menempatkan persegi di setiap sisi segitiga siku - siku. Coba kamu perhatikan Gambar 5.2 secara saksama.
Gambar tersebut menunjukkan sebuah segitiga yang memiliki persegi pada setiap sisinya. Ukuran segitiga tersebut adalah
  • Panjang sisi miring = AC = 5 satuan.
  • Tinggi = BC = 3 satuan.
  • Panjang sisi alas = AB = 4 satuan.
Perhatikan bahwa luas persegi pada sisi miring sama dengan luas persegi pada sisi alas ditambah luas persegi pada tinggi segitiga. Pernyataan tersebut dapat dituliskan sebagai berikut.
Luas persegi pada sisi miring = luas persegi pada sisi alas + luas persegi pada tinggi.
25 = 16 + 9
(5)2 = (4)2 + (3)2
AC2 = AB2 + BC2
Sekali lagi, uraian ini membenarkan kebenaran teorema Pythagoras . Untuk lebih jelasnya, coba kamu pelajari Contoh Soal 5.1
Image:pythagoras_5.jpg
Image:pythagoras_6.jpg

2. Penulisan Teorema Pythagoras

Pada materi sebelumnya, kamu telah mempelajari teorema Pythagoras pada segitiga siku-siku. Coba perhatikan Gambar 5.3. Gambar tersebut menunjukkan sebuah segitiga siku-siku ABC dengan panjang sisi miring b, panjang sisi alas c, dan tinggi a. Berdasarkan, teorema Pythagoras, dalam segitiga siku-siku tersebut berlaku:
Sekarang, bagaimana menentukan panjang sisi-sisi yang lain? seperti panjang sisi alas c atau tinggi a? Dengan menggunakan rumus umum teorema Pythagoras, diperoleh perhitungan sebagai berikut.
Image:pythagoras_8.jpg
Dari uraian tersebut, penulisan teorema Pythagoras pada setiap sisi segitiga siku-siku dapat dituliskan sebagai berikut.
Image:pythagoras_9.jpg
Image:pythagoras_10.jpg

3. Penggunaan Teorema Pythagoras

Seperti yang telah disebutkan sebelumnya, teorema Pythagoras banyak sekali digunakan dalam perhitungan bidang matematika yang lain. Misalnya, menghitung panjang sisi-sisi segitiga, menentukan diagonal pada bangun datar, sampai perhitungan diagonal ruang pada suatu bangun ruang. Berikut ini akan diuraikan penggunaan teorema Pythagoras pada segitiga dan bangun datar.

a. Penggunaan Teorema Pythagoras pada Sisi-Sisi Segitiga.

Pada materi sebelumnya, kamu telah mempelajari cara menghitung panjang sisi-sisi segitiga dengan menggunakan teorema Pythagoras. Sekarang coba perhatikan dan pelajari Contoh Soal 5.3
Image:pythagoras_11.jpg
Image:pythagoras_12.jpg
Image:pythagoras_13.jpg
Image:pythagoras_14.jpg

b. Penggunaan Teorema Pythagoras pada Bangun Datar

Pada kondisi tertentu, teorema Pythagoras digunakan dalam perhitungan bangun datar. Misalnya, menghitung panjang diagonal, menghitung sisi miring trapesium, dan lain sebagainya. Untuk lebih jelasnya, perhatikan contoh - contoh soal berikut ini.
Image:pythagoras_15.jpg
Image:pythagoras_16.jpg
Image:pythagoras_17.jpg
Image:pythagoras_18.jpg

4. Penerapan Teorema Pythagoras

Dalam kehidupan sehari-hari banyak sekali masalah - masalah yang dapat dipecahkan menggunakan teorema Pythagoras. Untuk mempermudah perhitungan, alangkah baiknya jika permasalahan tersebut dituangkan dalam bentuk gambar.
Coba kamu perhatikan dan pelajari contoh - contoh soal berikut ini secara saksama.
Image:pythagoras_19.jpg
Image:pythagoras_20.jpg
Image:pythagoras_21.jpg

B. Garis-Garis Pada Segitiga

Di kelas VII, kamu telah mengenal berbagai macam garis pada segitiga. Garis-garis pada segitiga tersebut adalah garis tinggi, garis berat, garis bagi, dan garis sumbu. Masih ingatkah kamu pengertian untuk masing-masing garis tersebut ?
Pada subbab ini, kamu akan mempelajari bagaimana menentukan dan menghitung panjang garis-garis pada segitiga. Namun, garis-garis pada segitiga yang dibahas pada bab ini dibatasi hanya garis tinggi dan garis berat.

1. Garis Tinggi Pada Segitiga

Sebelum mempelajari perhitungan garis tinggi pada segitiga, kamu harus memahami terlebih dahulu proyeksi titik atau garis pada suatu garis. Proyeksi merupakan dasar perhitungan garis tinggi pada segitiga. Coba kamu pelajari uraian berikut.

a. Proyeksi

Untuk memahami apa yang dimaksud dengan proyeksi, coba kamu perhatikan Gambar 5.7(a). Pada gambar tersebut terlihat titik P diproyeksikan terhadap garis AB. Hasil proyeksi titik P tersebut adalah titik P'. Sekarang, coba kamu perhatikan Gambar 5.7(b) gambar tersebut menunjukan proyeksi titik P terhadap garis AB dengan posisi yang berbeda. Hasil proyeksi titik P tersebut adalah P'.
Dari uraian ini apa yang dapat kamu ketahui? Proyeksi sebuah titik adalah pembentukan bayangan suatu titik terhadap satu bidang, dengan syarat garis hubung titik dan titik hasil proyeksinya harus tegak lurus dengan bidang tersebut.
Bagaimana panjang garis proyeksi tersebut ? Ada dua macam perhitungan yang dapat kamu lakukan. Berdasarkan materi persamaan garis lurus yang telah kamu pelajari, dapat diuraikan sebagai berikut.
Image:pythagoras_22.jpg
Image:pythagoras_23.jpg
Image:pythagoras_24.jpg
Image:pythagoras_25.jpg

b. Menghitung garis tinggi pada segitiga

Masih ingatkah kamu apa yang dimaksud dengan garis tinggi pada segitiga ? Perhatikan segitiga sebarang PQR pada Gambar 5.10 Garis PU, QT, dan RS adalah garis-garis tinggi segitiga PQR. Jadi, garis tinggi pada segitiga adalah garis yang ditarik dari sudut segitiga dan tegak lurus terhadap sisi yang ada di hadapan sudut segitiga tersebut.
Sekarang bagaimana cara menghitung garis tinggi pada suatu segitga? Ada rumus umum yang dapat kamu gunakan untuk menghitungnya. Untuk lebih jelasnya coba kamu pelajari uraian berikut secara saksama.
Image:pythagoras_27.jpg
Image:pythagoras_28.jpg
Image:pythagoras_29.jpg

2. Garis Berat pada Segitiga

Sama halnya dengan garis tinggi, garis berat pada segitiga pun telah kamu pelajari di kelas VII. Ingatkah kamu apa yang dimaksud dengan garis berat? Coba perhatikan Gambar 5.11. Gambar tersebut menunjukkan sebuah segitiga sebarang ABC. Perhatikan bahwa AE, BF, dan CD merupakan garis berat segitiga ABC.
Jadi, apa yang dapat kamu ketahui tentang garis berat? Garis berat pada segitiga adalah garis yang ditarik dari sudut segitiga dan membagi dua dengan sama panjang sisi yang ada di hadapan sudut tersebut. Titik G pada segitiga ABC merupakan titik berat segitiga. Bagaimana cara menghitung panjang garis berat pada suatu segitiga? Coba perhatikan segitiga sebarang ABC pada Gambar 5.12 di samping. Garis EC merupakan garis berat sedangkan garis DC merupakan garis tinggi. Untuk menghitung panjang EC, perhatikan uraian berikut.
Image:pythagoras_31.jpg
Image:pythagoras_32.jpg
Image:pythagoras_33.jpg
Image:pythagoras_34.jpg

Beri Penilaian

By Riza Baktianto with 1 comment

Teori Peluang dan Teori Himpunan


    Standar Kompetensi Teori Peluang terdiri dari dua (2) Kompetensi Dasar. Pada penyajian dalam buku ini, setiap Kompetensi Dasar memuat Tujuan, Uraian materi, Rangkuman dan Latihan. Kompetensi Dasar dalam Standar Kompetensi ini adalah Kaidah Pencacahan, Permutasi dan Kombinasi, dan Peluang Suatu Kejadian Standar Kompetensi ini digunakan untuk menyelesaikan masalah–masalah peluang suatu kejadian pada kehidupan sehari-hari dalam rangka untuk menunjang program keahliannya. Sebelum mempelajari kompetensi ini diharapkan anda telah menguasai standar kompetensi Sistem Bilangan Real terutama tentang perkalian, pembagian, penjumlahan dan pengurangan bilangan real. Pada setiap akhir Kompetensi dasar tercantum soal-soal latihan yang disusun dari soalsoal yang mudah sampai soal-soal yang sukar. Latihan soal ini digunakan untuk mengukur kemampuan anda terhadap kompetensi dasar ini, artinya setelah mempelajari kompetensi dasar ini secara mandiri dengan bimbingan guru sebagai fasilitator, ukur sendiri kemampuan anda dengan mengerjakan soal-soal latihan tersebut. Untuk melancarkan kemampuan anda supaya lebih baik dalam mengerjakan soal, disarankan semua soal dalam latihan ini dikerjakan baik di sekolah dengan bimbingan guru maupun di rumah. Untuk mengukur standar kompetensi lulusan tiap peserta didik, di setiap akhir kompetensi dasar, guru akan memberikan evaluasi apakah anda layak atau belum layak mempelajari standar Kompetensi berikutnya. Anda dinyatakan layak jika anda dapat mengerjakan soal 60% atau lebih soal-soal evaluasi yang akan diberikan guru.

B. KOMPETENSI DASAR

B.1. Kaidah Pencacahan, Permutasi, dan Kombinasi

a. Tujuan

Setelah mempelajari uraian kompetensi dasar ini, anda dapat:
􀂾 Menjelaskan pengertian kaidah pencacahan, faktorial, permutasi, dan kombinasi
􀂾 Menentukan banyaknya cara meyelesaikan masalah dengan kaidah pencacahan, permutasi, dan kombinasi
􀂾 Menyelesaikan masalah dengan menggunakan kaidah pencacahan, permutasi, dan kombinasi

b. Uraian

Materi Perhitungan peluang yang sering dipopulerkan dengan istilah Probabilitas pertama kali dikenalkan oleh Blaise Pascal dan Pierre de Fermat pada abad ke-17 melalui permainan dadu. Dari permainan dadu inilah akhirnya berkembang permainan permainan yang lain seperti pelemparan koin, permainan kartu bridge (remi) dan permainan lainnya. Oleh karena itu, konsep peluang lahir melalui suatu permainan. Dalam perkembangannya, perhitungan peluang mendapatkan perhatian yang serius dari para ilmuwan karena mempunyai peran yang sangat penting dalam perkembangan ilmu pengetahuan lainnya, seperti Ilmu fisika modern, Statistika, dan lain-lain.

1). Pengertian Kaidah Pencacahan (Caunting Slots)

Kaidah pencacahan atau Caunting Slots adalah suatu kaidah yang digunakan untuk menentukan atau menghitung berapa banyak cara yang terjadi dari suatu peristiwa. Kaidah pencacahan terdiri atas :
a. Pengisian tempat yang tersedia (Filling Slots),
b. Permutasi, dan
c. Kombinasi.

2). Pengisian Tempat yang Tersedia (Filling Slots)

Apabila suatu peristiwa pertama dapat dikerjakan dengan k1 cara yang berbeda, peristiwa kedua dapat dikerjakan dengan k2 yang berbeda dan seterusnya sampai peristiwa ke-n, maka banyaknya cara yang berbeda dari semua peristiwa tersebut adalah K, di mana : K = k1 x k2 x . . . x kn K sering disebut dengan istilah banyaknya tempat yang tersedia dengan aturan perkalian atau Kaidah perkalian. Untuk menentukan banyaknya tempat yang tersedia selain menggunakan aturan perkalian, juga menggunakan diagram pohon, tabel silang, dan pasangan berurutan Contoh 1 Misalkan ada dua celana berwarna hitam dan biru serta empat baju berwarna kuning, merah, putih, dan ungu. Ada berapa banyak pasangan warna celana dan baju yang dapat dibentuk?
Jawab: Dari masalah di atas dapat diselesaikan dengan kaidah pencacahan, banyak cara yang mungkin terjadi dari peristiwa tersebut dapat ditentukan dengan menggunakan metode berikut ini:
􀂙 Dengan tabel silang

Dari tabel silang dan diagram pohon di atas tampak ada 8 macam pasangan warna celana dan baju yang dapat dibentuk, yaitu : (h,k,), (h,m), (h,p), (h,u), (b,k), (b,m), (b,p), dan (b,u),
􀂙 Dengan Pasangan Terurut
Misalkan himpunan warna celana dinyatakan dengan A = {h,b} dan himpunan warna baju dinyatakan B = {k,m,p,u}. Himpunan pasangan terurut dari himpunan A dan himpunan B dapat ditulis {(h,k), (h,m), (h,p), (h,u), (b,k), (b,m), (b,p), (b,u)}. Banyak unsur dalam himpunan pasangan terurut ada 8 macam warna.
Contoh 2
Misalkan dari Semarang ke Bandung ada dua jalan dan dari Bandung ke Jakarta ada 3 jalan. Berapa banyak jalan yang dapat ditempuh untuk bepergian dari Semarang ke Jakarta melalui Bandung?
Jawab: Dari Semarang ke Bandung ada 2 jalan dan dari Bandung ke Jakarta ada 3 jalan. Jadi, seluruhnya ada 2 x 3 = 6 jalan yang dapat ditempuh.
Contoh 3
Dari lima buah angka 0, 1, 2, 3, dan 4 hendak disusun suatu bilangan yang terdiri atas 4 angka. Berapa banyak bilangan yang dapat disusun apabila angka-angka itu tidak boleh berulang?
Jawab: Angka pertama (sebagai ribuan) dapat dipilih dari 4 angka yaitu 1, 2, 3, dan 4. Misalnya terpilih angka 1. Karena angka-angka itu tidak boleh berulang, maka angka kedua (sebagai ratusan) dapat dipilih dari 4 angka, yaitu 0, 2, 3 dan 4. Misalnya terpilih angka 0. Angka ketiga (sebagai puluhan) dapat dipilih dari 3 angka, yaitu 2, 3, dan 4. Misalkan yang terpilih angka 2. Angka keempat (sebagai satuan) dapat dipilih dari 2 angka, yaitu 3, dan 4. Jadi, seluruhnya ada 4 x 4 x 3 x 2 = 96 bilangan yang dapat disusun dengan angka-angka yang tidak boleh berulang.
Contoh 4 Dari angka-angka 0, 1, 2, 3, 4, 5, dan 7 akan dibentuk bilangan dengan 4 angka dan tidak boleh ada angka yang diulang.
a. Berapa banyak bilangan dapat dibentuk?
b. Berapa banyak bilangan ganjil yang dapat dibentuk?
c. Berapa banyak bilangan yang nilainya kurang dari 5.000 yang dapat dibentuk?
d. Berapa banyak bilangan genap dan lebih besar dari 2.000 yang dapat dibentuk?
Jawab:
a. Angka ribuan ada 6 angka yang mungkin, yaitu 1, 2, 3, 4, 5, dan 7. Misalkan terpilih angka 1. Angka ratusan ada 6 angka yang mungkin, yaitu 0, 2, 3, 4, 5, dan 7. Misal terpilih angka 2. Angka puluhan ada 5 angka yang mungkin, yaitu 0, 3, 4, 5, dan 7. Misalkan terpilih angka 3. Angka satuan ada 4 angka yang mungkin, yaitu 0, 4, 5, dan 7. Jadi, banyak bilangan yang dapat dibentuk = 6 x 6 x 5 x 4 = 720 angka.
b. Bilangan ganjil apabila angka satuannya merupakan angka ganjil. Angka satuan ada 4 angka yang mungkin, yaitu 1, 3, 5, dan 7. Misalkan terpilih angka 1. Angka ribuan ada 5 angka yang mungkin yaitu 2, 3, 4, 5, dan 7. Misalkan terpilih angka 2. Angka ratusan ada 5 angka yang mungkin, yaitu 0, 3, 4, 5, dan 7. Misalkan terpilih angka 3. Angka puluhan ada 4 angka yang mungkin yaitu 0, 4, 5, dan 7. Jadi, banyak bilangan ganjil yang dapat dibentuk = 4 x 5 x 5 x 4 = 400 angka.
c. Bilangan yang kurang dari 5.000, maka: Angka ribuan ada 4 angka yang mungkin, yaitu 1, 2, 3, dan 4. Misalkan terpilih angka 1. Angka ratusan ada 6 angka yang mungkin yaitu 0, 2, 3, 4, 5, dan 7. Misal terpilih angka 2. Angka puluhan ada 5 angka yang mungkin yaitu 0, 3, 4, 5, dan 7. Misalkan terpilih angka 3. Angka satuan ada 4 angka yang mungkin, yaitu 0, 4, 5, dan 7. Jadi, banyak bilangan dapat dibentuk = 4 x 6 x 5 x 4 = 480 angka.
d. Bilangan genap apabila satuannya merupakan angka genap, yaitu 0, 2 atau 4. Bilangan lebih besar dari 2.000 dan angka satuannya 0, maka: Angka ribuan ada 4 angka yang mungkin, yaitu 3, 4, 5, dan 7. Misalkan terpilih angka 3. Angka ratusan ada 5 angka yang mungkin, yaitu 1, 2, 4, 5, dan 7. Misal terpilih angka 2. Angka puluhan ada 4 angka yang mungkin, yaitu 1, 4, 5, dan 7. Bilangan lebih besar dari 2.000 dan angka satuannya 2, maka: Angka ribuan ada 4 angka yang mungkin, yaitu 3, 4, 5, dan 7. Misalkan terpilih angka 3. Angka ratusan ada 5 angka yang mungkin, yaitu 0, 1, 4, 5, dan 7. Misal terpilih angka 0. Angka puluhan ada 4 angka yang mungkin, yaitu 1, 4, 5, dan 7. Bilangan lebih besar dari 2.000 dan angka satuannya 4, maka: Angka ribuan ada 4 angka yang mungkin, yaitu 2, 3, 5, dan 7. Misal terpilih angka 3. Angka ratusan ada 5 angka yang mungkin, yaitu 0, 1, 2, 5, dan 7. Misalkan terpilih angka 0. Angka puluhan ada 4 angka yang mungkin, yaitu 1, 2, 5, dan 7. Jadi, banyak bilangan genap dan lebih besar dari 2.000 yang dapat dibentuk adalah = (4 x 5 x 4) + (4 x 5 x 4) + (4 x 5 x 4) = 240 angka. 3). Pengertian dan Notasi Faktorial n faktorial adalah hasil kali bilangan bulat positif dari 1 sampai dengan n. Notasi dari n faktorial dilambangkan dengan n ! (dibaca : “n faktorial”)

3). Pengertian dan Notasi Faktorial

n faktorial adalah hasil kali bilangan bulat positif dari 1 sampai dengan n.
Notasi dari n faktorial dilambangkan dengan n ! (dibaca : “n faktorial”) n ! = 1 . 2 . 3 . . . (n – 2) . (n – 1).
n Contoh 5 Tentukanlah nilai dari 0! Jawab: Dari definisi faktorial : n ! = 1 . 2 . 3 .…. (n – 2) . (n – 1) . n . . . 1), (n – 1) ! = 1 . 2 . 3 .…. (n – 2) . (n – 1) . . . 2).
Jika persamaan 2) kita substitusikan ke persamaan 1), maka akan diperoleh: n ! = (n – 1) ! . n atau n = (n 1)! n! 􀀐 .
Jika n = 1 maka akan diperoleh kesamaan: 1 = (1 1)! 1! 􀀐 atau 1 = 0! 1! , Jadi, 0! = 1! = 1

B.2 Peluang Suatu Kejadian

a. Tujuan

Setelah mempelajari uraian kompetensi dasar ini, anda dapat:
􀂾 Menjelaskan pengertian kejadian dan ruang sampel
􀂾 Menghitung frekuensi harapan suatu kejadian
􀂾 Menghitung peluang suatu kejadian
􀂾 Menghitung peluang kejadian saling lepas
􀂾 Menghitung peluang kejadian saling bebas
􀂾 Menerapkan konsep peluang dalam menyelesaikan masalah program keahlian.

b. Uraian Materi

1). Pengertian Ruang Sampel dan Kejadian Pada percobaan melempar sekeping mata uang logam, hasil yang muncul dapat dituliskan dengan memakai notasi himpunan. Misalkan “G” dimaksudkan munculnya gambar dan “A” munculnya angka. Himpunan dari semua hasil di atas yang mungkin muncul pada percobaan ditulis S = {G , A}, S disebut ruang sampel atau ruang. Misalkan pada percobaan melempar sebuah dadu bersisi enam, himpunan dari semua hasil yang mungkin muncul pada percobaan ditulis S = {1, 2, 3, 4, 5, 6}. S disebut ruang sampel atau ruang contoh. Jadi, ruang sampel adalah Himpunan S dari semua kejadian atau peristiwa yang mungkin muncul dari suatu percobaan. Ruang sampel biasanya dilambangkan dengan huruf “S” yang disebut sebagai himpunan semesta. Anggota-anggota ruang contoh disebut titik sampel atau titik contoh. Misalnya ruang contoh S = {G, A} mempunyai 2 titik contoh, yaitu G dan A yang disebut sebagai anggota-anggota dari himpunan semesta. Banyaknya anggota ruang sampel biasanya dilambangkan dengan n(S). Setiap kali melakukan percobaan akan diperoleh hasil kejadian atau peristiwa.
Misalnya, kegiatan melempar sekeping uang logam akan muncul sisi gambar (G) atau munculnya sisi angka (A). Kegiatan melempar sebuah dadu bersisi enam, akan diperoleh hasil kejadian yang mungkin muncul salah satu dari enam sisi mata dadu 1, 2, 3, 4, 5, atau 6. Jadi, hasil kejadian adalah himpunan bagian dari ruang sampel. Suatu kejadian A adalah suatu himpunan dari titik sampel atau merupakan himpunan bagian dari ruang sampel S. Himpunan kosong atau { } dan S sendiri adalah himpunan bagian dari S, sehingga merupakan kejadian-kejadian. 􀁉 􀁉 disebut kejadian yang tak mungkin (mustahil), sedangkan S disebut kejadian yang pasti.
Contoh 21 Dua uang logam dilempar bersamaan, tentukan:
a. Ruang Sampel dan banyaknya ruang sampel?
b. Titik sample? 
Jawab: a. Ruang sampel diperlihatkan pada tabel di bawah ini:
Jadi, ruang sampelnya adalah S = {(A,A), (A,G), (G,A), (G,G)} dan n(S) = 4
b. Titik sampelnya ada 4, yaitu: (A,A), (A,G), (G,A), (G,G).
Contoh 22
Pada percobaan pelemparan 3 mata uang logam sekaligus 1 kali, jika P adalah kejadian muncul 2 angka, tentukanlah ruang sampel S, banyaknya ruang sampel, dan himpunan kejadian P.
Jawab: S = {AAA, AAG, AGA, GAA, GAG, AGG, GGA, GGG} dan n(S) = 8
P = {AAG, AGA, GAA}
2). Pengertian Peluang Suatu Kejadian
Sebelum mengetahui definisi dari peluang suatu kejadian, sebaiknya diketahui dahulu pengertian frekuensi relatif.
Frekuensi relatif adalah perbandingan antara banyaknya hasil yang muncul dengan banyaknya percobaan yang dilakukan.
Misalnya percobaan melempar sekeping uang logam sebanyak 12 kali. Jika muncul “G” 7 kali dan muncul “A” 5 kali, maka frekuensi relatif (Fr) dari G = 12 7 dan frekuensi relatif (Fr) dari A = 12 5 atau dapat ditulis: Fr(G) = 12 7 dan Fr(A) = 12 5 . Dengan demikian nilai frekuensi relatif sekeping mata uang dari G atau A akan mendekati 2 1 . Peluang munculnya G atau A adalah 2 1 ditulis P(G) = P(A) = 2 1 . Jadi, suatu percobaan yang mempunyai beberapa hasil, masing-masing mempunyai peluang yang sama, dapat dirumuskan sebagai berikut : n(S) P(A) 􀀠 n(A) Keterangan: P(A) = Peluang munculnya suatu kejadian A n(A) = Banyaknya anggota dalam kejadian A n(S) = Banyaknya anggota dalam himpunan ruang sampel. Nilai P(A) berkisar antara 0 sampai 1, P(A) = 1 adalah suatu kepastian dan P(A) = 0 adalah suatu mustahil. Contoh 23 Pada pelemparan sebuah dadu, tentukanlah peluang kejadian muncul: a. Bilangan 2? b. Bilangan prima?
Jawab: S = {1, 2, 3, 4, 5, 6}, maka n(S) = 6
a. Misalkan A adalah kejadian muncul bilangan 2, maka A ={2}, dan n(A) = 1 Jadi, P(A) = n(S) n(A) = 6 1 .
b. Misalkan B adalah kejadian muncul bilangan prima, maka B = {2, 3, 5}, n(B) =3 Jadi, P(B) = n(S) n(B) = 6 3 = 2 1 .
Contoh 24 Pada pelemparan suatu uang logam dan sebuah dadu, berapakah peluang munculnya:
a. Gambar pada uang logam dan bilangan genap pada dadu?
b. Angka pada uang logam dan bilangan komposit pada dadu Nilai P(A) berkisar antara 0 sampai 1, P(A) = 1 adalah suatu kepastian dan P(A) = 0 adalah suatu mustahil.
Contoh 23 Pada pelemparan sebuah dadu, tentukanlah peluang kejadian muncul:
a. Bilangan 2?
b. Bilangan prima? J
awab: S = {1, 2, 3, 4, 5, 6}, maka n(S) = 6
a. Misalkan A adalah kejadian muncul bilangan 2, maka A ={2}, dan n(A) = 1 Jadi, P(A) = n(S) n(A) = 6 1 .
b. Misalkan B adalah kejadian muncul bilangan prima, maka B = {2, 3, 5}, n(B) =3 Jadi, P(B) = n(S) n(B) = 6 3 = 2 1 .
Contoh 24 Pada pelemparan suatu uang logam dan sebuah dadu, berapakah peluang munculnya:
a. Gambar pada uang logam dan bilangan genap pada dadu?
b. Angka pada uang logam dan bilangan komposit pada dadu?
Dari tabel di atas:
S = {(A, 1), (A, 2), . . . , (G, 6) }, maka n(S) = 12
a. Misalkan A kejadian muncul gambar pada uang logam dan bilangan genap pada dadu, maka A = {(G, 2), (G, 4), (G, 6)}, dan n(A) = 3. Jadi, P(A)= n(S) n(A) = 12 3 = 4 1 .
b. Misalkan B kejadian muncul Angka pada uang logam dan bilangan komposit pada dadu, maka B = {(A, 4), (A, 6)}, n(B) = 2. Jadi, P(B) = n(S) n(B) = 12 2 = 6 1 .
Contoh 25 Suatu kotak berisi 6 bola putih dan 4 bola merah. Dari kotak itu diambil sebuah bola secara acak. Berapa peluang yang terambil itu:
a. Sebuah bola putih?
b. Sebuah bola merah?
Jawab: Bola putih dan bola merah seluruhnya ada 10 buah, jadi, n(S) = 10
a. Bola putih ada 6, jadi, n(bola putih) = 6 jadi, peluang terambilnya sebuah bola putih adalah: P (1 bola putih) = n(S) n(bola putih) = 10 6 = 5 3 .
b. Bola merah ada 4, jadi, n(bola merah) = 4 jadi, peluang yang terambil sebuah bola merah adalah : P (1 bola merah) = n(S) n(bola merah) = 10 4 = 5 2 .
Contoh 26 Di dalam sebuah kotak ada 9 bola yang diberi nomor 1 sampai 9. Apabila 2 bola diambil secara acak (random), tentukan peluang terambilnya:
a. Kedua bola bernomor ganjil
b. Kedua bola bernomor genap
c. Satu bola bernomor ganjil dan satu bola bernomor genap?
Jawab: Banyaknya ruang sampel: memilih 2 bola dari 9 bola adalah 9C2 = 7!.2! 9! = 2 8.9 = 36
a. Misalkan A kejadian muncul bola bernomor ganjil, maka A memilih 2 bola dari 5 bola yang bernomor ganjil, n(A) = 5C2 = 3!.2! 5! = 10 P(A) = n(S) n(A) = 36 10 = 18 5
b. Misalkan B kejadian muncul bola bernomor genap, maka B memilih 2 bola dari 4 bola yang bernomor genap, n(B) = 4C2 = 2!.2! 4! 6 dan P(B) n(S) n(B) = 36 6 = 6 1
c. Misalkan C kejadian muncul 1 bola bernomor ganjil dan 1 bola bernomor genap, n(C) = 5C1 x 4C1 = 4 x 5 = 20 P(B) = n(S) n(C) = 36 20 = 9 5 Contoh 27 Pasangan suami istri berencana memiliki 3 orang anak.
Tentukan peluang 3 anak tersebut:
a. Laki-laki semua
b. Dua laki-laki
c. Paling sedikit 1 perempuan?
Jawab: Misalkan laki-laki dilambangkan dengan L, dan perempuan dengan P, maka: S = {LLL, LLP, LPL, PLL, LPP, PLP, PPL, PPP}, sehingga n(S) = 8
a. Jika A = semua laki-laki, maka A = {LLL} , n(A) =1 jadi, P(A) = n(S) n(A) = 8 1
b. Jika B kejadian dua anak laki-laki, maka B = {LLP, LPL, PLL} , n(B) = 3 P(B) = n(S) n(B) = 8 3
c. Jika C kejadian paling sedikit 1 perempuan, maka C = { LLP, LPL, PLL, LPP, PLP, PPL, PPP} , n(C) = 7, sehingga P(C) = n(S) n(C) = 8 7
Catatan: Pola segitiga Pascal dapat juga digunakan untuk menyelesaikan berbagai soal peluang dimana kejadian sederhananya memiliki titik sampel 2. Jumlah ruang sampel n(S) dari n objek yang mempunyai dua sisi apabila ditos bersama-sama adalah 2n, atau n(S) = 2n.
Contoh 28 Sepuluh uang logam yang bersisi G dan A dilempar bersama, tentukanlah :
a. Banyaknya ruang sampel
b. Peluang munculnya 3 gambar
c. Peluang munculnya 7 angka
d. Peluang munculnya paling sedikit 8 gambar!
Jawab:
a. Jumlah n(S) dari 10 keping uang logam jika dilempar bersama = 210 = 1.024
b. n(3 gambar) dari pola segitiga Pascal = 10C3 = 7!.3! 10! = 1.2.3 8.9.10 = 120, jadi, P(3 gambar) = n(S) n(3gambar) = 128 15 1.024 120 􀀠
c. n(7 angka) dari pola segitiga Pascal = 10C7 = 7!.3! 10! = 1.2.3 8.9.10 = 120, jadi, P(7 angka) = n(S) n(7 angka) = 128 15 1.024 120 􀀠
d. Paling sedikit 8 gambar( > 8 gambar), berarti yang memungkinkan: n(8 gambar) = 10C8 = 8!.2! 10! = 45, n(9 gambar) = 10C9 = 9!.1! 10! = 10, dan n(10 gambar) = 10C10 = 10!.0! 10! =1. Sehingga n(> 8 gambar) = 45 + 10 + 1 = 56. Jadi, P(> 8 gambar) = n(S) n( 􀁴 8 gambar) = 128 7 1.024 56 􀀠 . 5).
Peluang Kejadian Majemuk Kejadian majemuk adalah kejadian yang dibentuk dengan cara menggabungkan dua atau lebih kejadian sederhana. Dengan memanfaatkan operasi antar himpunan, kita akan menentukan peluang kejadian majemuk. Operasi antar himpunan tersebut adalah gabungan dua himpunan dan irisan dua himpunan.
a). Aturan Penjumlahan dalam Peluang Kejadian Majemuk Misalkan pada percobaan melempar dadu bersisi enam sebanyak satu kali. Kejadian A muncul bilangan prima, yaitu A = {2, 3, 5} dan kejadian B muncul bilangan genap, yaitu B = {2, 4, 6}. Dalam diagram Venn, dua kejadian di atas dapat dilukiskan sebagai berikut:
Misalkan kejadian A muncul bilangan 1 atau 3, ditulis A ={1, 3} sedangkan kejadian B muncul bilangan 2 atau 4, ditulis B ={2, 4}. Dalam diagram Venn, himpunan A dan B digambarkan:
Dari diagram Venn tampak bahwa A dan B adalah dua himpunan saling lepas atau saling asing, karena A 􀅀 B = Ø atau n(A 􀅀 B) = 0 Dari operasi gabungan dua himpunan yang saling lepas diperoleh: n(A U B) = n(A) + n(B) ( karena n(A 􀅀 B) = 0), P(A U B) = n(S) n( AUB ) = n(S) n( A ) 􀀎 n(B ) = n(S) n( B ) n(S) n( A ) Contoh 35 Sebuah dadu dilempar sekali. Berapa peluang munculnya bilangan < 2 atau > 5?
Jawab: Misal A kejadian munculnya bilangan < 2 maka A = {1, 2} , P(A) = 3 1 6 2 􀀠 dan B kejadian munculnya bilangan > 5 maka B = {5, 6}, P(B) = 3 1 6 2 􀀠 Karena n(A 􀅀 B)= 0, maka A dan B adalah kejadian yang saling lepas, sehingga P(A U B) = P(A) + P(B) = 3 2 3 1 3 1 􀀎
􀀠 Contoh 36 Dua dadu dilempar bersama-sama, tentukan peluang munculnya: a. Dua dadu berjumlah 6 atau berjumlah 10 b. Dua dadu berjumlah 6 atau muncul mata dadu bernomor lima!
Jawab:



Beri Penilaian

By Riza Baktianto with No comments

Operasi Hitung Bilangan Bulat

Lambang Bilangan Bulat

Lambang bilangan bulat bentuk panjangnya merupakan hasil penjumlahan dari perkalian bilangan dengan pemangkatan bilangan 10.
Contoh:
2.345 = 2.000 + 300 + 40 + 5
= 2x103 + 3 x102 + 4 x101 + 5 x 100
2.345 = 2 ribuan + 3 ratusan + 4 puluhan + 5 satuan
Image:Mat_1.png

Menentukan Nilai Tempat Bilangan

Contoh:
1) 53.451
    Dibaca lima puluh tiga ribu empat ratus lima puluh satu.
2) 212.583
    Dibaca dua ratus dua belas ribu lima ratus delapan puluh tiga
3) 2.523.459
    Dibaca dua juta lima ratus dua puluh tiga ribu empat ratus lima puluh sembilan

Himpunan Bilangan Bulat

Bilangan bulat adalah bilangan yang terdiri dari:
a Bilangan bulat positif (bilangan asli)
b Bilangan nol
c. Bilangan bulat negatif (lawan bilangan asli)
Image:Mat_2.png

Sifat Perkalian dari Urutan Bilangan Bulat

a. Jika a > b, dan c bilangan bulat positif, maka a x c > b x c
jika a < b, dan c bilangan bulat positif, maka a x c < b x c
Contoh
1) 6 > 2 dan 6 bilangan bulat positif, maka 6x6 > 2x6
2) 5 < 7 dan 3 bilangan bulat positif, maka 5x3 < 7x3
b. Jika a > b, dan c bilangan bulat negatif, maka axc < bxc
Jika a < b, dan c bilangan bulat negatif, maka axc > bxc
Contoh
1) -2 >-6 dan -3 (bilangan bulat negatif), maka -2 x (-3) < -6 x (-3)
2) -3 < 2 dan -5 (bilangan bulat negatif), maka -3 x (-5) > 2x(-5)
c. Jika a > b atau a < b, dan c adalah bilangan nol, maka axc = bxc = 0
Contoh
1) 4 > -2, maka 4 x 0 = -2 x 0 = 0
2) 3 < 5, maka 3 x 0 = 5 x 0 = 0

Lawan bilangan bulat 

a. Setiap bilangan bulat mempunyai tepat satu lawan yang juga merupakan bilangan bulat
b. Dua bilangan bulat dikatakan berlawanan, apabila dijumlahkan menghasilkan nilai nol.
a + (-a) = 0
Contoh
1) Lawan dari 4 adalah -4, sebab 4 + (-4) = 0
2) Lawan dari -7 adalah 7, sebab -7 + 7 = 0
3) Lawan dari 0 adalah 0, sebab 0 + 0 = 0

Operasi bilangan bulat

Penjumlahan dan pengurangan bilangan bulat

Image:Mat_3.png
d. Menjumlahkan bilangan bulat negatif dengan bilangan positif.
Contoh
-6 + 8 = 2, digambarkan pada garis bilangan.

Perkalian Bilangan Bulat

Perkalian adalah penjumlahan berulang sebanyak bilangan yang dikalikan.
Contoh:
2 x 3 - 3 + 3 = 6
Perhatikan gambar di bawah ini, ya!

Sifat-sifat perkalian suatu bilangan
a. Perkalian bilangan positif dengan bilangan positif, hasilnya positif.
Contoh:
1) 4 x 5 = 5 + 5 + 5 + 5 = 20
2) 7 x 8 = 56
3) 12 x 15 = 180
b Perkalian bilangan positif dengan bilangan negatif, hasilnya negatif.
   Contoh:
    1) 4 x (-5) = (-5) + (-5) +(-5) +(-5) = -20
    2) 7 x (-8) = -56
    3) 12 x (-15) = -180
c. Perkalian bilangan negatif dengan bilangan positif, hasilnya negatif.
    Contoh:
    1) -4 x 5 = -(5 + 5 + 5 + 5) = -20.
    2) -7 x 8 = -56
    3) -12x 15 = -180
d. Perkalian bilangan negatif dengan bilangan negatif, hasilnya positif.
    Contoh:
    1) -4 x (-5) = -[-5 + (-5) + (-5) + (-5)] = -[-20] = 20
    2) -7 x (-8) = 56
    3) -12 x (-15) = 180
    Kesimpulan:

tabel perkalian
tabel perkalian

Pembagian bilangan bulat

Pembagian merupakan operasi kebalikan dari perkalian
Contoh
12 : 4 = 3, karena 4 x 3 = 12 atau 3 x 4 = 12
42 : 7 = 6, karena 7 x 6 = 42 atau 6 x 7 = 42

Sifat-sifat pembagian bilangan bulat
a. Pembagian bilangan positif dengan bilangan positif, hasilnya positif
    Contoh
    1) 63 : 7 = 9
    2) 143 : 11 = 13
b. Pembagian bilangan positif dengan bilangan negatif, hasilnya negatif
    Contoh:
    1) 63 : (-9) = -7
    2) 72 : (-6) = -12
c. Pembagian bilangan negatif dengan bilangan positif, hasilnya negatif
    Contoh:
    1) -63 : 7 = -9
    2) -120 : 10 = -12
d. Pembagian bilangan negatif dengan bilangan negatif, hasilnya positif.
    Contoh:
    1) -72 : (-8) = 9
    2) -120 : (-12) = 10

Menggunakan Sifat Operasi Hitung Bilangan Bulat

Sifat komutatif

Sifat komutatif (pertukaran) pada penjumlahan dan perkalian.
a + b = b + a
a x b = b x a, berlaku untuk semua bilangan bulat

Contoh:
1) 2 + 4 = 4 + 2 = 6
2) 3 + 5 = 5 + 3 = 8
3) 4 x 2 = 2 x 4 = 8
4) 3 x 2 = 2 x 3 = 6

Sifat asosiatif

Sifat asosiatif (pengelompokan) pada penjumlahan dan perkalian.
(a + b) + c = a + (b+c)
(a x b) x c = a x (bxc), berlaku untuk semua bilangan bulat
Contoh:
1) (2+4) + 6 = 2 + (4+6) = 12
2) (3+6) + 7 = 3 + (6+7) = 16
3) (3x2) x 4 = 3 x (2x4) = 24
4) (3x5) x 2 = 3 x (5x2) = 30

Sifat distributif (penyebaran)

a x (b + c) = (a x b) + (a x c), yang berlaku untuk semua bilangan bulat.
Contoh
1) 4 x (5 + 2) = (4 x 5) + (4 x 2) = 28
2) 5 x (7 + 3) = (5 x 7) + (5 x 3) = 50

Operasi Campuran

Aturan dalam mengerjakan operasi campuran adalah sebagai berikut.
1 .Operasi dalam tanda kurung dikerjakan terlebih dahulu.
2. Perkalian dan pembagian adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
3. Penjumlahan dan pengurangan adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
4. Perkalian atau pembagian dikerjakan lebih dahulu daripada penjumlahan atau
    pengurangan.

Contoh
1. a. 20 + 30 – 12 = 50 – 12 = 38
    b. 40 – 10 - 5 = 30 – 5 = 25
    c. 40 - (10 - 5) = 40 – 5 = 35 

2. a. 600 : 2O : 5 = 30 : 5 = 6
    b. 600 : (20 : 5) = 600 : 4 = 150
    c. 5 x 8 : 4 = 40 : 4 = 10

3. a. 5 x (8 + 4) = 5 x 12 = 60
    b. 5 x 8 -4 = 40 – 4 = 36
    c. 5 x (8 – 4) = 5 x 4 = 20

Menentukan FPB dan KPK Beberapa Bilangan Bulat dengan Faktor Prima

FPB dan KPK
Setiap bilangan dapat ditulis sebagai hasil kali faktor-faktor primanya. Kita mulai dengan membagi bilangan tersebut dengan bilangan prima 2, 3, 5, 7, 11, 13 dan seterusnya.
Contoh :
Tuliskan faktorisasi prima dari 18!
Jawab: Mulailah dengan membagi 18 dengan 2, 3, 5 dan seterusnya melalui pohon faktor berikut :
Jadi, faktorisasi prima dari 18 = 2 x 3 x 3 = 2 x 32






Contoh :
Tuliskan faktorisasi prima dari 180!












Kita dapat mencari FPB dan KPK beberapa bilangan dengan menentukan faktor-faktor primanya.
Contoh :
Carilah FPB dan KPK dari 40 dan 60
Jawab : Bagilah kedua bilangan dengan bilangan prima mulai dari 2, 3, 5 dan seterusny, secara bersamaan seperti berikut ini.

FPB dicari dari hasil kali bilangan prima di kiri (dilingkari) yang habis membagi kedua bilangan. Jadi, FPB dari 40 dan 60 adalah 2 x 2 x 5 = 4 x 5 = 20
KPK dicari dari hasil kali semua bilangan prima di kiri (termasuk yang tidak dilingkari). Jadi, KPK dari 40 dan 60 adalah 2 x 2 x 2 x 3 x 5 = 4 x 6 x 5 = 4 x 30 = 120.

Pangkat Tiga dan Akar Pangkat Tiga 

Perpangkatan merupakan perkalian berulang
Contoh :
22 = 2 x 2 = 4
33 = 3 x 3 x 3 = 9 x 3 = 27
Operasi akar pangkat tiga dapat dijelaskan sebagai berikut:
Bilangan berapakah apabila dipangkatkan tiga hasilnya 8? Jawabannya adalah 2. Dalam hal ini, kita mencari akar pangkat tiga dari delapan yang kita tulis 3√8 = 2 (dibaca akar pangkat 3 dari 8 adalah 2).
Contoh:
3√27 = 3, karena 3 x 3 x 3 = 9 x 3 = 27
Untuk mencari akar pangkat 3 dari bilangan yang cukup besar, dapat dicari dengan bantuan bilangan pangkat 3.
1= 1
2= 8

Contoh: 

Operasi Hitung Campuran dengan Bilangan Berpangkat

Aturan dalam melakukan operasi hitung campuran adalah sebagai berikut.
1. Operasi dalam tanda kurung, selalu dikerjakan terlebih dahulu.
2. Perpangkatan atau penarikan akar dikerjakan terlebih dahulu daripada perkalian atau pembagian.
3. Perkalian dan pembagian adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
4. Penjumlahan dan pengurangan adalah setara, yang ditemui terlebih dahulu
dikerjakan terlebih dahulu.
5. Perkalian atau pembagian dikerjakan lebih dahulu daripada penjumlahan atau pengurangan.
Contoh:
1. 53 – 23 = 125 – 8 = 117
2. 33 x 43 = 27 x 64 = 1.728

By Riza Baktianto with 2 comments